Technology Validation

Sig Gronich 202-586-1623

sigmund.gronich@ee.doe.gov

John Garbak 202-586-1723

john.garbak@ee.doe.gov

Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program FORS 5G-086

Technology Validation Technical Goal & Objectives

Goal: Demonstrate and validate integrated hydrogen and fuel cell technologies in a systems context under real operating conditions.

Objectives

- By 2007, validate an electrolyser at a capital cost of \$300/kWe when built in quantity that is powered by a wind turbine.
- By 2008, validate hydrogen vehicles with greater than 250 miles range, 2,000 hour fuel cell durability, and \$3.00/gallon (gasoline equivalent) hydrogen production cost (untaxed) and vehicles that can be safely and conveniently refueled by trained drivers.
- By 2008, validate stationary fuel cell and hydrogen ICE systems that coproduce hydrogen and electricity from non-renewable and renewable resources, and demonstrate 30,000 hour durability, greater than 32% efficiency and a price of \$1,250/kW or less (for volume production).
- By 2010, validate an integrated biomass/wind or geothermal electrolyzer to hydrogen system to produce hydrogen for \$3.30/kg at the plant gate (untaxed and unpressurized).

Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources.

HIGH EFFICIENCY & RELIABILITY **ZERO/NEAR ZERO EMISSIONS**

Technology Validation Barriers

BARRIERS

- Vehicle Data needed on fuel cell durability, fuel economy, and vehicle maintenance and operation for validation
- Storage Cost, durability, fast-fill and discharge performance, and structural integrity need to be validated
- Hydrogen Refueling Infrastructure Cost, sensor durability and refueling times need to be validated
- Hydrogen and Electricity Co-production Need to validate the cost and durability for the co-production of hydrogen and electricity
- Maintenance and Training Lack of facilities for maintenance and untrained personnel for hydrogen vehicles
- Codes and Standards Lack of adopted codes and standards to permit the deployment of refueling stations
- Hydrogen from Fossil, Nuclear, and Renewable Resources Lack of data on cost, efficiencies and durability of these systems

Targets and Status

Characteristics <u>Vehicles</u>	Units	2003 Status	2008	2015
Fuel Cell Stack Durability	Hours	1,000	2,000	5,000
Range	Miles		250	300
Hydrogen Cost	\$/kg of H2	4.50	3.00	1.50
Co-Production option				
Cost	\$/kw	2,500	1,250	750
Durability	Hours	15,000	30,000	40,000
Electrical Efficiency of Fuel Cell	0/0	30	32	40

Funding and Partners

Infrastructure Vehicle

• FY03 enacted: \$10M \$1.8M

• FY04 request: \$13.1M \$15M

• Key research partners – Auto manufacturers, energy companies, hydrogen suppliers, fuel cell suppliers, universities, Air Products, Quantum Technologies, UOP, Univ of Texas, Proton Energy, Hawaiian Electric, Detroit Edison, Arizona Public Services, Zoot Enterprises.

Accomplishments

- Issued Solicitation for the Hydrogen Fleet and Infrastructure Demonstration and Validation Project
- Awarded Power Parks Project to Hawaiian Electric Company, Detroit Edison and Arizona Public Services
- A fuel cell mine locomotive is being evaluated by the Fuel Cell Propulsion Institute and Vehicle Projects LLC

Technology Validation: Key Milestones

Task	Description	Date (FY)
1,2 and 4	Awards made to start fuel cell vehicle/infrastructure demonstration activity and for hydrogen co-production infrastructure facilities.	3Q, 2004
1	Validate fuel cell demonstration vehicle range of ~200 miles and durability of ~1,000 hours.	4Q, 2006
2	Five stations and maintenance facilities constructed with advanced sensor systems and operation procedures.	4Q, 2006
3	Validation of \$3/gallon equivalent hydrogen cost	1Q, 2006
4	First regional network in operation with fuel cell system that project < \$2500/kW	1Q, 2007
5	Validation of \$3.30/gallon equivalent price hydrogen from biomass/wind (untaxed & pressurized)	3Q, 2010
6	Results from analysis of examination of synergies from combining hydrogen and electricity energy carrier systems, including advanced power parks.	2Q, 2006

- Controlled hydrogen fleet and infrastructure solicitation (including co-production option) closes August 14, 2003 Selections 4th quarter 2003
- Validation of 2010 vehicles, storage, codes and standards, and co-production targets
- Validation of hydrogen from renewable, nuclear and coal
- Validation of delivery systems